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Under a new namalependency categarthis paper corrects the descriptionradtwork cate-
goriesgiven in [2]. Dependency categories are a variation on thi@mof contextual category
([@1, [8)) in that the category of dependency categoriesgefined here, is equivalent to the
category of contextual categories.

As in [2] the motivation has been to formalise and foregrotivednetwork structure of type
dependencies so as to provide a theoretical foundatioméouse of networks of composition
relationships in entity modelling as applied both concefuand, for the most practical of
purposes, in systems development.

The objects of categories of either persuasion, eitherexturl categories or dependency
categories, can be thought of as contexts or as types thafalao known as dependent types)
but equally they can be thought of as entity types in the sased in entity modelling. The
morphisms of either correspond with the many-one binagti@iships that are the staple fare
of entity modelling and in either case there is a distingegsbubset of morphisms depicted
on diagrams using a triangular headed arrew).(In a contextual category the distinguished
subset forms a hierarchy, in a dependency category thagiisshed morphisms form not a hi-
erarchy but a wide acyclic subcategory. In either case ttinduished morphisms correspond
to certain relationships known as composition relatiopshwhich feature in certain styles of
entity modelling ([6], [9], [4]) and which were implied inéinfluential paper by Chenl[5] who
introduced the idea of certain entities being dependentimery relationships with others for
both their identification and their existence.

1 Introduction

In this figure there are two triangles and these have six sides — thougling= depicting these

number only five; this possibility comes about because irstatement that the two triangles have six sides
we are understandirgjdeto beside of trianglewhich is to say that we understand it to be a concept that
varies as triangle varies. A side, therefore, is a depengpatof thing — it is some thing held in the mind
in the context of some other thing. Similarly, certain worsisch as the word ‘pop’, appear in sentences
sometimes as nouns but also sometimes as verbs, or adjeaties adverbs, so illustrating that a word,
in and by itself, cannot be said to be a ‘noun’, ‘verb’, 'adjeg’ or other such part of speech, lest it be
appearing in some grammatical sentence and so ‘noun’ amd‘ ‘aad the like — as types of thing — are
dependent on sentence-like types of thing.

If in a situation temperature varies over position then itniplied - and might educate us if our notion
of temperature was only half formed - that the concept of tnapre had somehow in its make up a de-
pendency on the concept of spatial position. So it is wittegythat vary. Concepts like ‘angle’, ‘edge’,
‘boundary’, ‘bounding line’ as we learn these concepts, aan that they do not stand alone; they are
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dependent concepts as are face of cube, endpoint of linetignnbetween lines, citizen (of a country),
tangent (to a curve), atom of a molecule, nucleus of a cedlratter of a play.

When a quantity y varies as some variable x varies then as muditteurse the quantity might be written
yx With the x subscript reminding us of the dependency; or thantity might be writtery(x) so using the
notation of function application. If the quantities in gties are real numbers then we may write either

yx)xeR
or as something along the lines of:

forxe Ry(x) €R

Equally we might introducg at the outset not as a quantity but as a functipn: R — R. Note however
that in a particular scientific enquiry, at the outset, whanhes first is the quantities that are measured and
the enquiry will often be to understand the quantities wiiah be measured and to understand over what
domains they vary influenced by which variables - to discakierindependent and dependent variables.
The point that is being made here is that in scientific enggurgntities that varyprecede functions and
guantities that vary do so according to context.

In a formal mathematical notatiori_{[3] we introduce symbolsfunctions and, subsequently, dependent
types by way of formal rules. For example we introduce typeend B and some functiorf delivering
entities of typeB from entities of typeA by the rules:

FAisatype (2)
FBis atype (2)
xeAr f(x) eB 3)

In rules such as these, variables are introduced to thefldfedurnstylelt) and an assertion is given to the
right. The left hand side presents a context in which thettigimd side is asserted. We also wifiteA — B

for such a function and consider there to be a category oktgpe functional dependencies and represent
such in the diagrams of catgeory theory.

A somewhat different diagrammatic notation is availabléhini the sphere of Information Systems Devel-
opment, entity model diagrams in the style of Barker, ENMgrtin, Schlaer-Mellor and others (see [10]),
focus on binary relationships between types of entity —fional dependencies between types of entity are
said to be many-one relationships and are depicted usingdiaes foot notation as, for example, here:

Figure 1: Many-one Binary Relationship f between entityety\ and B

Of course there are quantities which do not vary — they arstaoh— they do not have contexts they depend
on. If ais a constant of typA then we assert:

FacA
Using the symboR for the type of real numbers then we have:

F Ris atype
FmeR

Other quantities vary over a number of different dimensiamg we represent them as functions with mul-
tiple arguments. If a quantity of typkevaries over typed; andA;, as for example electric potential varies



over space and time then we write it as a function with two argjots:

A is atype
F Ay is atype
FBis atype
X1 € A1, X2 € Ao F f(X1,%2) €B

We might also represeritby a multiarrow in a graph:
Az f
—
Az
or as a function whose domain is the cartesian produdiiaindA2, which generally would be represented
asA; x Ao.

Consider that types are a kind of abstract quantity and wedr® the possibility that types may vary just
as quantities do and in particular that tigpeof a quantity may vary as thguantityitself does.

Various notations are used to express such type dependeroieformal mathematical purposes, the func-
tional notation used for quantities that vary can equally®ed for types that vary. If the type of quantity f
varies as f varies then we can assert this as follows:

FAis atype
x € AF B(x) is a type
x € Al f(x) € B(x)

Such aB is said to be dependent on type So, for example, ‘the side opposite an angle’ in a study of
triangles is a quantity (an entity) which varies both as tlegle varies and as the angle varies:

x € Triangley € Anglgx) : oppositeSidg) € Sidéx)

Similarly we can make type assertions such as
x € Countryt headO f Stat&) € Citizen(x)

In this type assertion ‘headOfState’ is a quantity whichasying, dependent on Country and is of a type
which varies as the country varies.

If B is a type dependent ohthen instead of imagining typ® as having a set of instances we can imagine
instead an A-indexed family of sets of instances. If in aéddithere is & such thatx € A ,b(x) € B(X)

(as ‘headOfState’ above) then think of a section of the famflsets of instances d@, see figuré12. If
Ba)ac A in an A-indexed family of sets the a section of B is a functibnA — (J,4B(@) such that for
eachac A b(a) € B(a).

A second possibility, by analogy with the representatioa fifnction as an arrof : B — A, is to represent

a dependency between one tyand anotheA by a directed edgB — A which then represents the func-
tional relationship between entities of tyBeand the entities of typA that they depend on.

In this case in any particular situation the types and thejirethdencies form a directed graph.
Furthermore, any directed graph makes sense as, and catel@eéited as, a set of types and type depen-

dencies providing (i) there are no cycles in the graph andigeal that (ii) all nodes B there are only finitely
many A, such thaB — A and (iii) there are no infinite sequences of the fakin— A, — As.....



set A

N setB,, for everyac A

element b(a) of the s@&;, for everyac A

Figure 2: A section b of A-indexed family of sets B.

As an example, the directed graph:

C

J,

By B,

N/
A
J,
1
interpreted as types and type dependencies expressedvarfg:

Ais atype

x € A:Bi(x)is atype

x € A:By(x) is atype

x€e Ay e Bi(x):C(x,y) is atype

Similarly the directed graph:

can be interpreted as representing the following type syste

(4)

(42)

(4b)

(4c)
(4d)

(®)



A; is atype (5a)

Ay is atype (5b)
X1 € A1, X € Ay 1 B(Xg,%2) is a type (5¢)
X1 € A1, X2 € Ag,y € B(x1,X2) : C(X1,X2,Y) is a type (5d)

and this example can be represented in fdrin (6) within a &tuécategory werein the cartesian product
of A; andA, can represented Az In this example typ® is explicitly dependent on two types{ and
A2). In the approach of [1][]3] this double dependency needepresented (in a contextual category) by
a dependency d8 on a cartesian product éf andA,. Two such cartesian products are availalcpgl:Az
and p;zAl. The resulting graph if the first one is chosen is showflin (6).

C

Pa, A2 (6)

Such type dependencies as these can be representennippsition relationshipgithin certain styles of
entity modelling (for one of these, see www.entitymodgjlorg). Composition relationships may be dis-
tinguished on diagrams from other functional relationship being drawn leaving the lower edge of a box
representing the type being depended on and entering tlex agdge of the box representing the dependent
type.

Examples are given in figurg$ 3 afd


www.entitymodelling.org

Symbol Introductory Rule
language G languageis a type
sentence x € language- sentencéx) is a type

(&) word X € language- word(x) is a type
noun x € language y € sentencg) F noun(y) is a type
verb x € language y € sentencg&) F verh(y) is a type

adjective x € language y € sentencg) - ad jectivey) is a type

1 L J

language
language

(b) / \ © [sentence] [ word ]
sente\}< word /’ \\

noun ” verb ” adjective]

noun verb adjective

Figure 3: Three representations of a system of types (a3 mla formal mathematical syntax, (b) a graph
of type dependencies (c) an entity modelling diagram.

L J

play

[performance] [ character

1IN _Z1N

Figure 4: A player plays the part of a character in the samgethia they are performing in.

Consider the following two rules:

X1 € Ay1 € B1(x1), X € A Yo € Bo(X2) : C(X1,Y1,%2,Y2) is a type (7a)
and
X €A1 € Bi(X),y2 € Ba(X) : C(x,y1,Y2) is a type (7b)

They both give rise to a graph shaped like this:

/\
\/

8)



In the case ofl {Ab)C relies for context on instances Bf andB, which themselves are based within the
context of a common instance &f In the case ofl(4b), but not, significantly, in the cdsé (¥, path:

C — By — Alis equivalent to the patl€ — B, — A and the diagram commutes. So dependencies compose
in different ways and so represent the types dependenbiesdtiables over which types vary); therefore it

is the category of dependencies (not just the directed yrapich is significant to characterising the type
dependency relationships. Note that the model in figlireldvisl the pattern of (4b) rather thdn{7a) which

is to say that the diagram of relationships in figre 4 comsute

We now proceed to give a series of definitions which lead exslytto the definition ofdependency cat-
egory. Dependency categories contain all the structure needegptesent dependent types in the sense
that these are in the syntax of generalised algebraic #®dli®#]). As such the category of dependency
categories is equivalent to the category of contextuaboates.

2 Acyclic Categories

A category C is calleccyclic if it has no inverses and no nonidentity endomorphismss dbfinition is
given by Kozlov (se€ [8]) who offers the following intuition

Another way to visualize acyclic categories is to think anthas those that can be drawn
on a sheet of paper, with dots indicating the objects, andigiit or slightly bent arrows, all
pointing down, indicating the nonidentity morphisms...

Previous authors had referred to such categories as lmgipgfree

The following is an example of an acyclic category given byd¢ov which we have rearranged and rela-
belled:

C

y1| Y2

yioX=Yyz0X 5 (9)
sz
A

This category can be taken as representing the following sygtem:

Ais a type (8a)
x € A:B(x) is a type (8b)
X € Ar,y1 € B(X),y2 € B(x) : C(X,y1,Y2) is a type (8¢c)

Contrast with this acyclic category:

Y1 y2

X1 =Y10X X2 =Y20X (g)



which represents :

Ais atype (8a)
x e A:B(x) is a type (8b)
X1 € A1,¥1 € B(x1),X%2 € A1,¥2 € B(X2) : C(x1,X2,Y1,Y2) is a type (8¢c)

3 Category with Distinguished Morphisms

Definition A categoryC is well-foundedprovided that for any objedA of C the set of morphisms with
domainA s finite.

Definition Define acategory with distinguished morphisritsbe a categorg along with a wide acyclic
subcategorp that is well-founded. Morphisms of the subcategory arerreteto as d-morphism. We will
write f : B— Ain C to mean thaf : B— Ain C and thatf is a d-morphism i.e is in the subcategd@of
distinguished morphisis

4 Spans and Cospans

The category\ is defined to be this category:

/ . \
[ ] [}
If we need names for the individual objects and morphisms leige the names show here:

N

M M

A spanwithin a categoryC is exactly a functoiS: A — C; it is a pair of morphisms o€ that have a
common domain object i.e it is any diagram of this form:

f D g
N ©)
C C

Similarly acospanin a categonC is exactly a functoS: A°P — C and so it is exactly a diagram of this
form:

C C
xl\ B/x2 (10)

1 Note that this the same notation has been used differentf§]in f contextual category does give rise to a category witirdi
guished morphisms but only if the distinguished morphisms d&entéo be not just those denoteg : B — A in that paper but
also all those in the subcategory generated by such.



The cospari(10) dE; andC; is said to be @oincident cospanf the span[(9) iff the diagram:

f D g
O\
Cy C
P

11)

commutes.

We will say that the cospah (IL0) isiainimal coincident cospafor the span[(9) iff it is coincident and there
does no exist a cospan

\ / (12)

that is coincident td{9) and such that there is a morplisi’ — B such that both

C1 G
\ “/
" B' and B' v, Commute. A cospahi : A°P — Cis said tofactor through
| |
B B

a diagraml : S— C iff there exists a cospa’ : A°P — Ssuch thaF'oJ =F.

5 Higher Cospans and Quotiented Higher Cospans

The notion of zhigher cospanvas introduced irf]7] for diagrams in a category of shap& but for us there
are significant diagrams whose shape category is a quofiexft’d and since we are not aware of further
terminology in this area we introduce some here. It is apjiatgto make use the join symbok) from
relational algebra.

For anyn > 2 define the categomto be this category:

Al AZ
én )23

& & Y2 lyn

M P M

Definition A quotiented n-cospain categoryC is any diagram irC having shapex, i.e. itis any function
F:xp—C



6 Some Other Preliminary Definitions?

Definition If C is a category then eharacterising familyfor a spans of C is defined to be the set of its
minimal coincident cospans.

Definition If C is a category with distinguished morphisms andfif, ... f,) is a tuple of d-morphisms of
C with common domain then define tisbaracterising diagranof (f;, ... f,) to be the diagram with shape

categoryx,where
n=>% > IXil

1<i<n 1<)<n,
j#i

and wherey; j is the characterising family within the subcategory of depiisms ofC for the pair fj, f;
and|x; j| is its cardinality, and with functdD : S— C defined for 1<i <n,1<j<n,i# j, 1 <k <|Xi;j
by

&ijk— k(&)
and

Yik = Fjk(y)

whereF; j ¢ is thek'th cospan within the characteristic family of the péiyf;.

Definition If C is a category with distinguished morphisms then a family -of@phismsf; : B — A is
said to be a basis for object B iff for every morphismB — X in C either

(i) f factors through one of; for somei i.e there existg : Ay — X, for somei, such thatfiog= f or

(i) there exists 1< ky < ko...km < n, and d-morphismsy, ...,gm such that for each, 1< j <m, g;:
X — Ay and

f Ogj = fkj
and such that the diagram

01 92 Om

Aip A Aj

2 m

is a limit con@ in categoryC for the characteristic diagram gi, ...gm.

7 Cones and Tight Cones

Recall the definition of conéN, ) to a diagrant : J — C of a categonC as an objecN of C and a family
of morphisms; indexed by objectg of J such that for allf : j — j"in J, @; o F(f) = ;.. Define a cone
(N, ¢)to betight iff for all pairs ji, j» of objects of shape categody every minimal coincident cospan of
the span:

2please regard the terminology introduced here as provisiotige author would be glad to receive suggested improvemspss e
cially where he has failed to use prior established termipplo

3] want to say cannonical limit here but | can’t. Monitor thisition to see whether a problem or not. | think it is a minorayemce.
The question is whether if X dependent on Y and Y’ isomorphi¥ then X is dependent on Y’. This in turn has an effect on the
round trip from presentation to category back to presesati

10



N 3

factors through the diagrafm.

8 Definition of Dependency Category
A dependency category a categonC with distinguished morphisms and a terminal object 1 and :

(i) for any object A ofC the unique morphisrty : A— 1 is a d-morphism

(ii) for all diagrams D of d-morphisms

B B
A
an objectB; [>D< B, of C and d-morphismg; : By >D< B, — Bi andp; : By [>D< B, — B, such that :

Bl ISI Bz P2

x ~a

Bl BZ

is a pullback in categor€ and such that for any con®\, ) to diagramD the mediating morphism
h:N— B qu By is a d-moprphism iff every morphism in the cor{®l, @) is a d-morphism and the

cone is tight.

(iii) Other pullbacks: if

then there is a pullback

and pullbacks cohdfleand if also:

4exactly as for contextual category

11



X

J]y,

B/
andy # Y thenq(f,y) oy is a d-morphism. Further, if
X
y[/ Xﬂ
A —f> B1 .. Bm
andys, ...ym is a basis foX then the set:
X[flya]

7N

(iv) If in (iii) the morphism f is a dependency theyif,y) is also a dependency and

for any diagram D:
B1 B>
Xx /Q
A

thenBa[xq|x2] = B1[X|x1] = B1 qu B, andq(x1,%2) = x5x1 andq(X2, x1) = XjX2 So that we have:

is a basis forf*X.

X1[><1X2

a(xe,x1) —Xl*Xz—bFV \\:LXZ = X2 kX1 = P2

B
X1
e
(v) Equalisers and properties of equalisers: f* (1 ;) X2 thenthere is an equaliser: XngZB =
X2
A
and the morphismeo x; which equals, by definitiorgo a, is a d-morphism as shown in the following

diagram:

UB—>B

X1=X2
eoxy = eoxz\ »//

12



For any other d-morphisr : B — A’ leaving B, the morphisreo @ is a d-morphism; furthermore,
if

Al A ... Ap
andxy, ...Xm is a basis for B then
o B

X1=X2

eoq; = eo% l kox
€oX3 m

Ar Az ... An

is a basis for o B.
X1=Xo

For any objecC and morphisny : C — B such thatyo x; = yo Xz the mediating morphis: C —
o B is a d-morphism iff the morphismis a d-morphism and the cor€,y) is tight i.e iff there

X1=X
does not exist an objeé distinct fromA and morphisms; : B — A, x, : B— A" andx: A" — A
such that each of the three diagrams contained here:

BAy/C\);B
N

A/
X1 JJ X2
X
A

This completes the definition.

commute.

9 Construction of Limits of Other Dependency Diagrams

Lemma 9.1. For all diagrams D of d-morphisms with shapg;:

B B
Xn Xy
X1| X2 X X
Aq Ao .. An

there is an object Blgl B, of C and d-morphisms jp: By [g B, +-Byand p:B: [>D< B, — B; such that :

13



is a limit of diagram D in categonC and such that for any conéN, ) to diagram D the mediating
morphism N — B; I>51 B, is a d-morphism iff each morphism in the cdie ) is a d-morphism and the

cone is tight.
Proof. This lemma can be proved by induction using the next lemma. O

Lemma 9.2. In any categonC if F : S— C is a diagram with limit(L, ¢), if S is a category extending S
by an objeciy and a pair of morphismé; : 31 — Bo and & : B> — Bo, wheref; and 3, are objects of S,
if G: S— Cis a diagram that extends F, then if :

@0 G(&1)

e
E——1L

Bo (14)

qq_:,/ o G(EZ)

is an equaliser irC then(E, ¢') is a limit of the diagram G, wherg' is the cone defined by

d _{ eo @y if B is an object of S
P71 @5,0G(&) ifBispo

Proof. If (N, y/)is a cone to the diagra then, the restrictiony to objects inF is a cone t&S. Therefore
there exists a unique: N — L such that

hop=y (15)
Now, we have
ho @, 0 G(X) = Yp, 0 G(&1) by (15)
= Yp,0G(&2) becausey is a cone tdG
=ho g, 0G(&) by (I3)

and so it follows, sincd (14) is an equaliser diagram, thertetlis a uniqug : N — E such that
goe=h (16)

To show that(E, ¢') is a limit to the diagram G we show thgb ¢/ = ¢/ and thatg is the unique such
morphism,g: N — E. We need show that for all objecsof S, (go ¢/)g = L[l[’}. We need consider two

cases. In the first case for obje@of Swe have:

go g =(goe)ogs by definition of¢
=hog by (I8)
=y by (15)
= by definition ofy

In the second case the objgts the additional objeqB, of S. For this object we have:

9o ¢, =goeo g, 0G(é) by definition of¢/
=hogg 0G(&1) by (I8)
= W, 0 G(é1) by (I8)
= Yp, ©G(&1) by definition ofy
= g, sincey/ is a cone

14



and so, as required, we have shown thaty = ¢/. Finally, if g : N — E such thaiy o ¢/ = ¢/ then we
have for any objec8 of S that

(do¢)p=yp
and therefore from the defintions @f andy we have that, for all objeci8 of S,
goeoqs =p
and from the definition ofi as the unique morphism such tthat @ = ¢y we have that/ oe = h.

Now we have:

gdoe=h=goe

from which it followsg = ¢’ because is an equaliser and therefore is a monomorphism. O
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