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Under a new name,dependency category, this paper corrects the description ofnetwork cate-
goriesgiven in [2]. Dependency categories are a variation on the notion of contextual category
([1], [3]) in that the category of dependency categories, asdefined here, is equivalent to the
category of contextual categories.

As in [2] the motivation has been to formalise and foregroundthe network structure of type
dependencies so as to provide a theoretical foundation for the use of networks of composition
relationships in entity modelling as applied both conceptually and, for the most practical of
purposes, in systems development.

The objects of categories of either persuasion, either contextual categories or dependency
categories, can be thought of as contexts or as types that vary (also known as dependent types)
but equally they can be thought of as entity types in the senseused in entity modelling. The
morphisms of either correspond with the many-one binary relationships that are the staple fare
of entity modelling and in either case there is a distinguished subset of morphisms depicted
on diagrams using a triangular headed arrow (_). In a contextual category the distinguished
subset forms a hierarchy, in a dependency category the distinguished morphisms form not a hi-
erarchy but a wide acyclic subcategory. In either case the distinguished morphisms correspond
to certain relationships known as composition relationships which feature in certain styles of
entity modelling ([6], [9], [4]) and which were implied in the influential paper by Chen [5] who
introduced the idea of certain entities being dependent on binary relationships with others for
both their identification and their existence.

1 Introduction

In this figure there are two triangles and these have six sides – though the lines depicting these

number only five; this possibility comes about because in thestatement that the two triangles have six sides
we are understandingsideto beside of trianglewhich is to say that we understand it to be a concept that
varies as triangle varies. A side, therefore, is a dependenttype of thing – it is some thing held in the mind
in the context of some other thing. Similarly, certain words, such as the word ‘pop’, appear in sentences
sometimes as nouns but also sometimes as verbs, or adjectives or as adverbs, so illustrating that a word,
in and by itself, cannot be said to be a ‘noun’, ‘verb’, ’adjective’ or other such part of speech, lest it be
appearing in some grammatical sentence and so ‘noun’ and ‘verb‘ and the like – as types of thing – are
dependent on sentence-like types of thing.

If in a situation temperature varies over position then it isimplied - and might educate us if our notion
of temperature was only half formed - that the concept of temperature had somehow in its make up a de-
pendency on the concept of spatial position. So it is with types that vary. Concepts like ‘angle’, ‘edge’,
‘boundary’, ‘bounding line’ as we learn these concepts, we learn that they do not stand alone; they are

∗john.w.cartmell gmail.com

1



dependent concepts as are face of cube, endpoint of line, junction between lines, citizen (of a country),
tangent (to a curve), atom of a molecule, nucleus of a cell, character of a play.

When a quantity y varies as some variable x varies then as matter of course the quantity might be written
yx with the x subscript reminding us of the dependency; or the quantity might be writteny(x) so using the
notation of function application. If the quantities in question are real numbers then we may write either

yx)x∈R

or as something along the lines of:

for x∈ R,y(x) ∈ R

Equally we might introducey at the outset not as a quantity but as a functiony, y : R→ R. Note however
that in a particular scientific enquiry, at the outset, what comes first is the quantities that are measured and
the enquiry will often be to understand the quantities whichcan be measured and to understand over what
domains they vary influenced by which variables - to discoverthe independent and dependent variables.
The point that is being made here is that in scientific enquiryquantities that varyprecede functions and
quantities that vary do so according to context.

In a formal mathematical notation ([3] we introduce symbolsfor functions and, subsequently, dependent
types by way of formal rules. For example we introduce typesA andB and some functionf delivering
entities of typeB from entities of typeA by the rules:

⊢ A is a type (1)

⊢ B is a type (2)

x∈ A⊢ f (x) ∈ B (3)

In rules such as these, variables are introduced to the left of the turnstyle(⊢) and an assertion is given to the
right. The left hand side presents a context in which the right hand side is asserted. We also writef : A→ B
for such a function and consider there to be a category of types and functional dependencies and represent
such in the diagrams of catgeory theory.

A somewhat different diagrammatic notation is available within the sphere of Information Systems Devel-
opment, entity model diagrams in the style of Barker, Ellis,Martin, Schlaer-Mellor and others (see [10]),
focus on binary relationships between types of entity – functional dependencies between types of entity are
said to be many-one relationships and are depicted using thecrows foot notation as, for example, here:

A Bf

Figure 1: Many-one Binary Relationship f between entity types A and B

Of course there are quantities which do not vary – they are constant – they do not have contexts they depend
on. If a is a constant of typeA then we assert:

⊢ a∈ A

Using the symbolR for the type of real numbers then we have:

⊢ R is a type

⊢ π ∈ R

Other quantities vary over a number of different dimensionsand we represent them as functions with mul-
tiple arguments. If a quantity of typef varies over typesA1 andA2, as for example electric potential varies
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over space and time then we write it as a function with two arguments:

⊢ A1 is a type

⊢ A2 is a type

⊢ B is a type

x1 ∈ A1,x2 ∈ A2 ⊢ f (x1,x2) ∈ B

We might also representf by a multiarrow in a graph:

A1

B
A2

f

or as a function whose domain is the cartesian product ofA1 andA2, which generally would be represented
asA1×A2.

Consider that types are a kind of abstract quantity and we areled to the possibility that types may vary just
as quantities do and in particular that thetypeof a quantity may vary as thequantityitself does.

Various notations are used to express such type dependencies. For formal mathematical purposes, the func-
tional notation used for quantities that vary can equally beused for types that vary. If the type of quantity f
varies as f varies then we can assert this as follows:

⊢ A is a type

x∈ A⊢ B(x) is a type

x∈ A⊢ f (x) ∈ B(x)

Such aB is said to be dependent on typeA. So, for example, ‘the side opposite an angle’ in a study of
triangles is a quantity (an entity) which varies both as the triangle varies and as the angle varies:

x∈ Triangle,y∈ Angle(x) : oppositeSide(y) ∈ Side(x)

Similarly we can make type assertions such as

x∈Country⊢ headO f State(x) ∈Citizen(x)

In this type assertion ‘headOfState’ is a quantity which is varying, dependent on Country and is of a type
which varies as the country varies.

If B is a type dependent onA then instead of imagining typeB as having a set of instances we can imagine
instead an A-indexed family of sets of instances. If in addition there is ab such thatx ∈ A,b(x) ∈ B(x)
(as ‘headOfState’ above) then think of a section of the family of sets of instances ofB, see figure 2. If
Ba)a∈ A in an A-indexed family of sets the a section of B is a functionb : A →

⋃

a∈AB(a) such that for
eacha∈ A,b(a) ∈ B(a).
A second possibility, by analogy with the representation ofa function as an arrowf : B→ A, is to represent
a dependency between one typeB and anotherA by a directed edgeB _ A which then represents the func-
tional relationship between entities of typeB and the entities of typeA that they depend on.

In this case in any particular situation the types and their dependencies form a directed graph.

Furthermore, any directed graph makes sense as, and can be interpreted as, a set of types and type depen-
dencies providing (i) there are no cycles in the graph and provided that (ii) all nodes B there are only finitely
many A, such thatB _ A and (iii) there are no infinite sequences of the formA1 _ A2 _ A3.....
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b
b

b

b
b

b

b
b

b

b
b

b

set A

setBa, for everya∈ A

element b(a) of the setBa, for everya∈ A

Figure 2: A section b of A-indexed family of sets B.

As an example, the directed graph:
C

B1 B2

A

1

(4)

interpreted as types and type dependencies expresses the following:

A is a type (4a)

x∈ A : B1(x) is a type (4b)

x∈ A : B2(x) is a type (4c)

x∈ A,y∈ B1(x) : C(x,y) is a type (4d)

Similarly the directed graph:

C

B

A1 A2

1

(5)

can be interpreted as representing the following type system:
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A1 is a type (5a)

A2 is a type (5b)

x1 ∈ A1,x2 ∈ A2 : B(x1,x2) is a type (5c)

x1 ∈ A1,x2 ∈ A2,y∈ B(x1,x2) : C(x1,x2,y) is a type (5d)

and this example can be represented in form (6) within a contextual category werein the cartesian product
of A1 andA2 can represented asp∗A1

A2 In this example typeB is explicitly dependent on two types (A1 and
A2). In the approach of [1], [3] this double dependency needs berepresented (in a contextual category) by
a dependency ofB on a cartesian product ofA1 andA2. Two such cartesian products are available:p∗A1

A2

andp∗A2
A1. The resulting graph if the first one is chosen is shown in (6).

C

B

p∗A1
A2

A1 A2

1

(6)

Such type dependencies as these can be represented bycomposition relationshipswithin certain styles of
entity modelling (for one of these, see www.entitymodelling.org). Composition relationships may be dis-
tinguished on diagrams from other functional relationships by being drawn leaving the lower edge of a box
representing the type being depended on and entering the upper edge of the box representing the dependent
type.

Examples are given in figures 3 and??.
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(a)

Symbol Introductory Rule
language ⊢ languageis a type
sentence x∈ language⊢ sentence(x) is a type
word x∈ language⊢ word(x) is a type
noun x∈ language, y∈ sentence(x) ⊢ noun(y) is a type
verb x∈ language, y∈ sentence(x) ⊢ verb(y) is a type
adjective x∈ language, y∈ sentence(x) ⊢ ad jective(y) is a type

(b)

1

language

sentence word

noun verb ad jective

(c)

language

sentence word

noun verb adjective

Figure 3: Three representations of a system of types (a) rules in a formal mathematical syntax, (b) a graph
of type dependencies (c) an entity modelling diagram.

play

performance character

player

Figure 4: A player plays the part of a character in the same play that they are performing in.

Consider the following two rules:

x1 ∈ A,y1 ∈ B1(x1),x2 ∈ A,y2 ∈ B2(x2) : C(x1,y1,x2,y2) is a type (7a)

and

x∈ A,y1 ∈ B1(x),y2 ∈ B2(x) : C(x,y1,y2) is a type (7b)

They both give rise to a graph shaped like this:

C

B1 B2

A

(8)
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In the case of (7b),C relies for context on instances ofB1 andB2 which themselves are based within the
context of a common instance ofA. In the case of (7b), but not, significantly, in the case (7a),the path:
C _ B1 _ A is equivalent to the path:C _ B2 _ A and the diagram commutes. So dependencies compose
in different ways and so represent the types dependencies (the variables over which types vary); therefore it
is the category of dependencies (not just the directed graph) which is significant to characterising the type
dependency relationships. Note that the model in figure 4 follows the pattern of (7b) rather than (7a) which
is to say that the diagram of relationships in figure 4 commutes.

We now proceed to give a series of definitions which lead eventually to the definition ofdependency cat-
egory. Dependency categories contain all the structure needed torepresent dependent types in the sense
that these are in the syntax of generalised algebraic theories ([3]). As such the category of dependency
categories is equivalent to the category of contextual categories.

2 Acyclic Categories

A category C is calledacyclic, if it has no inverses and no nonidentity endomorphisms. This definition is
given by Kozlov (see [8]) who offers the following intuition:

Another way to visualize acyclic categories is to think of them as those that can be drawn
on a sheet of paper, with dots indicating the objects, and straight or slightly bent arrows, all
pointing down, indicating the nonidentity morphisms...

Previous authors had referred to such categories as beingloop-free.

The following is an example of an acyclic category given by Kolozov which we have rearranged and rela-
belled:

C

B

A

(9)

y1 y2

x

y1 ◦x= y2 ◦x

This category can be taken as representing the following type system:

A is a type (8a)

x∈ A : B(x) is a type (8b)

x∈ A1,y1 ∈ B(x),y2 ∈ B(x) : C(x,y1,y2) is a type (8c)

Contrast with this acyclic category:

C

B

A

(9)

y1 y2

x

x1 = y1 ◦x x2 = y2 ◦x
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which represents :

A is a type (8a)

x∈ A : B(x) is a type (8b)

x1 ∈ A1,y1 ∈ B(x1),x2 ∈ A1,y2 ∈ B(x2) : C(x1,x2,y1,y2) is a type (8c)

3 Category with Distinguished Morphisms

Definition A categoryC is well-foundedprovided that for any objectA of C the set of morphisms with
domainA is finite.

Definition Define acategory with distinguished morphismsto be a categoryC along with a wide acyclic
subcategoryD that is well-founded. Morphisms of the subcategory are referred to as d-morphism. We will
write f : B _ A in C to mean thatf : B→ A in C and thatf is a d-morphism i.e is in the subcategoryD of
distinguished morphisms1.

4 Spans and Cospans

The categoryΛ is defined to be this category:

•

• •

If we need names for the individual objects and morphisms we will use the names show here:

∆

Γ1 Γ2

ξ γ

A spanwithin a categoryC is exactly a functorS : Λ → C; it is a pair of morphisms ofC that have a
common domain object i.e it is any diagram of this form:

D

C1 C2

(9)
f g

Similarly acospanin a categoryC is exactly a functorS : Λop → C and so it is exactly a diagram of this
form:

C1 C2

B
(10)

x1 x2

1 Note that this the same notation has been used differently in [3] – a contextual category does give rise to a category with distin-
guished morphisms but only if the distinguished morphisms are taken to be not just those denotedpB : B _ A in that paper but
also all those in the subcategory generated by such.
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The cospan (10) ofC1 andC2 is said to be acoincident cospanof the span (9) iff the diagram:

D

C1 C2

B

(11)

f g

x1 x2

commutes.

We will say that the cospan (10) is aminimal coincident cospanfor the span (9) iff it is coincident and there
does no exist a cospan

C1 C2

B′
(12)

x′1 x′2

that is coincident to (9) and such that there is a morphismh : B′ → B such that both

C1

B′

B

x1

h

x′1

and

C2

B′

B

x2

h

x′2

commute. A cospanF : Λop→ C is said tofactor through

a diagramJ : S→ C iff there exists a cospanF ′ : Λop → Ssuch thatF ′ ◦J = F .

5 Higher Cospans and Quotiented Higher Cospans

The notion of ahigher cospanwas introduced in [7] for diagrams in a category of shapeΛopn
but for us there

are significant diagrams whose shape category is a quotient of Λopn and since we are not aware of further
terminology in this area we introduce some here. It is appropriate to make use the join symbol (⋊⋉) from
relational algebra.

For anyn≥ 2 define the category⋊⋉nto be this category:

∆1 ∆2

Γ1 Γ2 ... Γn

ξ1 ξ2

ξn γ1
γ2 γn

Definition A quotiented n-cospanin categoryC is any diagram inC having shape⋊⋉n i.e. it is any function
F :⋊⋉n→ C
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6 Some Other Preliminary Definitions2

Definition If C is a category then acharacterising familyfor a spans of C is defined to be the set of its
minimal coincident cospans.

Definition If C is a category with distinguished morphisms and if〈 f1, ... fn〉 is a tuple of d-morphisms of
C with common domain then define thecharacterising diagramof 〈 f1, ... fn〉 to be the diagram with shape
category⋊⋉nwhere

n= ∑
i,

1≤i≤n

∑
j,

1≤ j≤n,
j 6=i

|χi, j |

and whereχi, j is the characterising family within the subcategory of d-morphisms ofC for the pair fi , f j

and|χi, j | is its cardinality, and with functorD : S→ C defined for 1≤ i ≤ n, 1≤ j ≤ n, i 6= j, 1≤ k≤ |χi, j

by
ξi, j,k 7→ Fi, j,k(ξ )

and
γi, j,k 7→ Fi, j,k(γ)

whereFi, j,k is thek’th cospan within the characteristic family of the pairfi , f j .

Definition If C is a category with distinguished morphisms then a family of d-morphismsfi : B _ Ai is
said to be a basis for object B iff for every morphismf : B _ X in C either

(i) f factors through one offi for somei i.e there existsg : Ai → X, for somei, such thatfi ◦g= f or

(ii) there exists 1≤ k1 ≤ k2...km ≤ n, and d-morphismsg1, ...,gm such that for eachj, 1≤ j ≤ m, g j :
X _ Ak j and

f ◦g j = fk j

and such that the diagram

X

A j1 A j2 ... A jm

g1 g2 gm

is a limit cone3 in categoryC for the characteristic diagram ofg1, ...gm.

7 Cones and Tight Cones

Recall the definition of cone〈N,ψ〉 to a diagramF : J→C of a categoryC as an objectN of C and a family
of morphismsψ j indexed by objectsj of J such that for allf : j → j ′ in J, ψ j ◦F( f ) = ψ j ′ . Define a cone
〈N,ψ〉to betight iff for all pairs j1, j2 of objects of shape categoryJ, every minimal coincident cospan of
the span:

2Please regard the terminology introduced here as provisional – the author would be glad to receive suggested improvements espe-
cially where he has failed to use prior established terminology.

3I want to say cannonical limit here but I can’t. Monitor this situation to see whether a problem or not. I think it is a minor annoyance.
The question is whether if X dependent on Y and Y’ isomorphic toY then X is dependent on Y’. This in turn has an effect on the
round trip from presentation to category back to presentation.

10



N

F( j1) F( j2)
(13)

ψ j1 ψ j2

factors through the diagramF .

8 Definition of Dependency Category

A dependency categoryis a categoryC with distinguished morphisms and a terminal object 1 and :

(i) for any object A ofC the unique morphismtA : A→ 1 is a d-morphism

(ii) for all diagrams D of d-morphisms

B B′

A

x x′

an objectB1 ⋊⋉
D

B2 of C and d-morphismsp1 : B1 ⋊⋉
D

B2 _ B1 andp1 : B1 ⋊⋉
D

B2 _ B1 such that :

B1 ⋊⋉
D

B2

B1 B2

p1 p2

is a pullback in categoryC and such that for any cone〈N,ψ〉 to diagramD the mediating morphism
h : N → B1 ⋊⋉

D
B2 is a d-moprphism iff every morphism in the cone〈N,ψ〉 is a d-morphism and the

cone is tight.

(iii) Other pullbacks: if

X

A B
f

y

then there is a pullback

X[ f |y] X

A B

f ∗y

f

q( f ,y)

y

and pullbacks cohere4 and if also:

4exactly as for contextual category
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X

B′

y’

andy 6= y′ thenq( f ,y)◦y′ is a d-morphism. Further, if

X

A B1 ... Bm
f

y1 ym

andy1, ...ym is a basis forX then the set:

X[ f |y1]

A B2 ... Bm

f ∗y1 f∗y2 f∗ym

is a basis forf ∗X.

(iv) If in (iii) the morphism f is a dependency thenq( f ,y) is also a dependency and

for any diagram D:

B1 B2

A

x1 x2

thenB2[x1|x2] = B1[x2|x1] = B1 ⋊⋉
D

B2 andq(x1,x2) = x∗2x1 andq(x2,x1) = x∗1x2 so that we have:

x1 ⋊⋉
D

x2

x1 x2

A

x1 x2

q(x2,x1) = x1 ∗x2 = p1 q(x1,x2) = x2 ∗x1 = p2

(v) Equalisers and properties of equalisers: If

B

A

x1 x2 then there is an equaliser: σ
x1=x2

B B A

x1

x2

e

and the morphisme◦x1 which equals, by definition,e◦a2 is a d-morphism as shown in the following
diagram:

σ
x1=x2

B B

A

x1

x2

e

e◦x1 = e◦x2
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For any other d-morphisma′ : B _ A′ leaving B, the morphisme◦a′ is a d-morphism; furthermore,
if

B

A1 A2 ... Am

x1 x2
xm

andx1, ...xm is a basis for B then

σ
x1=x2

B

A1 A3 ... Am

e◦a1 = e◦x2
e◦x3

e◦xm

is a basis for σ
x1=x2

B.

For any objectC and morphismy : C → B such thaty◦x1 = y◦x2 the mediating morphismh : C →
σ

x1=x2
B is a d-morphism iff the morphismy is a d-morphism and the cone〈C,y〉 is tight i.e iff there

does not exist an objectA′ distinct fromA and morphismsx′1 : B _ A′, x′2 : B _ A′ andx : A′
_ A

such that each of the three diagrams contained here:

C

B B

A′

A

y y

x′1 x′2

x
x1 x2

commute.

This completes the definition.

9 Construction of Limits of Other Dependency Diagrams

Lemma 9.1. For all diagrams D of d-morphisms with shape⋊⋉n:

B B′

A1 A2 ... An

x1 x2

xn x′1
x′2 x′n

there is an object B1 ⋊⋉
D

B2 of C and d-morphisms p1 : B1 ⋊⋉
D

B2 _ B1 and p1 : B1 ⋊⋉
D

B2 _ B1 such that :

B1 ⋊⋉
D

B2

B1 B2

p1 p2
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is a limit of diagram D in categoryC and such that for any cone〈N,ψ〉 to diagram D the mediating
morphism h: N → B1 ⋊⋉

D
B2 is a d-morphism iff each morphism in the cone〈N,ψ〉 is a d-morphism and the

cone is tight.

Proof. This lemma can be proved by induction using the next lemma.

Lemma 9.2. In any categoryC if F : S→ C is a diagram with limit〈L,φ〉, if S′ is a category extending S
by an objectβ0 and a pair of morphismsξ1 : β1 → β0 andξ2 : β2 → β0, whereβ1 andβ2 are objects of S,
if G : S→ C is a diagram that extends F, then if :

E L β0 (14)
e

φB◦G(ξ1)

φB′ ◦G(ξ2)

is an equaliser inC then〈E,φ ′〉 is a limit of the diagram G, whereφ ′ is the cone defined by

φ ′
β =

{

e◦φβ if β is an object of S
φβ1

◦G(ξ1) if β is β0

Proof. If 〈N,ψ ′〉is a cone to the diagramG then, the restrictionψ to objects inF is a cone toS. Therefore
there exists a uniqueh : N → L such that

h◦φ = ψ (15)

Now, we have

h◦φβ1
◦G(x) = ψβ1

◦G(ξ1) by (15)

= ψβ2
◦G(ξ2) becauseψ is a cone toG

= h◦φβ2
◦G(ξ2) by (15)

and so it follows, since (14) is an equaliser diagram, that there is a uniqueg : N → E such that

g◦e= h (16)

To show that〈E,φ ′〉 is a limit to the diagram G we show thatg◦ φ ′ = ψ ′ and thatg is the unique such
morphism,g : N → E. We need show that for all objectsβ of S′, (g◦ φ ′)β = ψ ′

β . We need consider two
cases. In the first case for objectsβ of Swe have:

g◦φ ′
β = (g◦e)◦φβ by definition ofφ

= h◦φβ by (16)

= ψβ by (15)

= ψ ′
β by definition ofψ

In the second case the objectβ is the additional objectβ0 of S′. For this object we have:

g◦φ ′
β0

= g◦e◦φβ1
◦G(ξ1) by definition ofφ ′

= h◦φβ1
◦G(ξ1) by (16)

= ψβ1
◦G(ξ1) by (15)

= ψ ′
β1
◦G(ξ1) by definition ofψ

= ψ ′
β0

sinceψ ′ is a cone
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and so, as required, we have shown thatg◦φ ′ = ψ ′. Finally, if g′ : N → E such thatg′ ◦φ ′ = ψ ′ then we
have for any objectβ of S that

(g′ ◦φ ′)β = ψ ′
β

and therefore from the defintions ofφ ′ andψ we have that, for all objectsβ of S,

g′ ◦e◦φβ = ψβ

and from the definition ofh as the unique morphism such thath◦φ = ψ we have thatg′ ◦e= h.

Now we have:

g′ ◦e= h= g◦e

from which it followsg= g′ becausee is an equaliser and therefore is a monomorphism.
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